
  523

S E S  2 0 1 3  
N i n t h  S c i e n t i f i c  C o n f e r e n c e  w i t h  I n t e r n a t i o n a l  P a r t i c i p a t i o n  

S P A C E ,  E C O L O G Y ,  S A F E T Y  
20 – 22 November 2013, Sofia, Bulgaria 

 
  

VOLUME DEPENDENCE OF THE GRÜNEISEN RATIO  
FOR EQUATION-OF-STATE STUDIES.  

PHENOMENOLOGICAL EXPRESSIONS 
 

Valentin Gospodinov 
 

Space Research and Technology Institute – Bulgarian Academy of Sciences 
e-mail: v.gospodinov@gmail.com 

 
 

  Key words:  Grüneisen ratio, volume dependence, infinite compression limit. 
 
Abstract: This work presents an analysis of the existing self-contained expressions for the volume 

dependence of the Grüneisen ratio   in view of their further application to EOS (equation of state) studies. 

Phenomenological expressions for   are assessed and applied to materials with the major types of chemical 

bonds. Interpolation formulas were considered in a previous work of the author (Gospodinov, 2011). Predictions 
from regression analysis are compared to existing experimental data sets. All expressions predict with very good 
accuracy the values of   at ambient conditions and its volume variation in the low and intermediate pressure 

region, but fail to give correct values for its infinite compression limit. A possible reason for this is that all 
experiments are performed at comparatively low pressures. Experiments, performed at higher pressures are 
necessary to clarify the ability of the assessed models to predict the infinite compression limit of  . The equation, 

proposed by Jeanloz (1989) is the best fit to experimental data. A modification to this equation, more convenient 
for use in shock physics, is proposed in the present work. It could be used jointly with the shock Hugoniot to 
derive a complete EOS for solids from their response to shock-wave loading. 
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 Резюме: В настоящата работа са анализирани известните феноменологични изрази за за-
висимостта на параметъра на Грюнайзен γ от обема. Това е направено с оглед на тяхното 
използване за получаване на пълното уравнение на състоянието (УС) на твърди тела по реакцията 
им при взривноимпулсно въздействие. Тези изрази са приложени към материали с основните видове 
химична връзка. Резултатите, получени чрез регресионен анализ са сравнени със съществуващите 
експериментални резултати. Всички изрази описват с много добра точност стойностите на γ при 
атмосферни условия и изменението му в експериментално изследвания диапазон от налягания. Нито 
едно от разгледаните уравнения не предсказва правилно стойността на γ при P→∞. Вееоятна 
причина за това е, че всички експерименти са проведени при сравнително ниски налягания. 
Уравнението предложено от Jeanloz (1989)  описва най-добре експерименталните резултати. В 
настоящата работа е предложена модификация на това уравнение, по-подходяща за приложение във 
физиката на ударните вълни. Тя може да се използва заедно със ударната адиабата за получаване на 
пълното УС на твърди тела по реакцията им при взривноимпулсно въздействие. 

 
 
Introduction 
  

To determine the functional dependence of the Grüneisen ratio on volume is a key problem in 
shock physics. Results from shock-wave experiments provide direct information on the compressional 
and thermal behavior of metals, ceramics, rocks, and minerals at high pressures and high 
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temperatures. Unfortunately, data points are often sparsely deployed and irregularly distributed. That 
is why it is a challenge, using this information, to have a go on deriving the complete EOS for solids 
from their response to shock-wave loading. Have it, one can easily obtain all their thermodynamic 
properties by simple differentiation. 

In this way, it is possible not only to obtain a reliable interpolation tool, but to predict all 
compressional and thermal properties of solids in the whole high-pressure high-temperature region, 
attainable by shock-wave loading, standing on a sound physical basis. 

One of the ways to derive a complete EOS for solids from their response to shock-wave 
loading is to use the specific form of the volume dependence of   together with the shock Hugoniot. 

That is why it is important to obtain the form of   independently of the shock Hugoniot or of an 

isotherm. 
The Grüneisen ratio has both a statistical mechanics (microscopic) and thermodynamic 

(macroscopic) definition. 
The thermodynamic definition of   represents it in terms of specific heat, thermal expansion 

coefficient, and bulk modulus  
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 where   is the thermal expansion coefficient, VC  -- the specific heat at constant volume, PC  -- the 

specific heat at constant pressure, TB  -- the isothermal bulk modulus, and SB  -- the adiabatic bulk 

modulus. In terms of its thermodynamic definition   may be considered the measure of the change of 

pressure resulting from the increase of internal energy at constant volume. The experimental 
determination of  , based on its thermodynamic definition implies the concurrent measurement of the 

involved thermodynamic properties at high pressures or the experimental determination of the partial 
derivative in Eq.(2). 

The statistical mechanics definition relates it to the vibrational frequencies of the atoms in the 
crystal lattice of a material  
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 where i  are the 3N  vibrational frequencies of the crystal lattice. The volume dependence of all 

lattice vibrational frequencies is assumed one and the same [1, p.~130], so 
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 The experimental determination of the Grüneisen ratio from its microscopic definition is very difficult, 
since it requires a detailed knowledge of the phonon dispersion spectrum of a material. 

Because of the scarce experimental results and the lack of first principle analytic equation, 
numerous phenomenological expressions for the volume dependence of   have been reported in 

literature. They predict a varying dependence of   as a function of volume and some of them even 

give different values for it at ambient pressure. Most of them are analyzed in two extensive reviews --- 
by Knopoff and Shapiro [2], and by Anderson [3]. Their accuracies are also compared in recent works 
by X. Peng  et al. [5] and by Cui and Yu [6]. These papers are in the field of geophysics. It is 
characteristic of them that there is an intrinsic relationship between the expressions for  , examined 

there, and the cold or the normal isotherm. Many of these expressions relate   at atmospheric 

pressure ( = 0P ) to the first derivative of the bulk modulus with respect to pressure or volume ( TB  ). 

To the author's knowledge, a comparison of the self-contained phenomenological expressions 
for the Grüneisen ratio, used in shock physics, has not been performed so far. Therefore, the objective 
of the present work is to collect the most commonly used expressions for   and analyze and compare 

them to existing experimental data. It differs from previous approaches [4-6, 8] in that:  
   there is no intrinsic relationship between the expressions for ( )V  analyzed here and the 

shock Hugoniot ( )HP V , the cold isotherm ( )cP V , or an arbitrary isotherm ( )TP V , 

  the expressions are applied to materials with various chemical bonds --- metallic ( Cu ,  -

Fe , K ), ionic ( NaCl ), and covalent ( MgO ).  
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 The scope of the research with respect to the examined materials and the maximum applied 
pressure is limited by the availability of experimental data. 

 
1.  Phenomenological expressions for the Grüneisen ratio 
  

There are several stand-alone expressions for the Grüneisen ratio which predict a varying 
dependence of   on volume. 

Jeanloz [7], starting from the second Grüneisen ratio,  

(5) 
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 assumed it to depend on volume only. The particular volume dependence he used is given by  
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The logarithmic derivative of q ,  
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 known as the third Grüneisen ratio, is supposed to be a material-dependent constant. 
Then, for the particular volume dependence of  , Jeanloz obtained  
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 where 0 , 0q , and 0V  are the values of  , q , and V  at ambient conditions. 

Srivastava and Sinha [8] modify Eq.(8) to introduce in it the infinite compression limit of  . 

They assume  =(12 ). For P  , i.e. 0V  , Eq.(8) yields  

(9)  0
0= .

q
exp

q
 

 
  

   

 
Now, following the model of an oscillating lattice of ions in a uniform neutralizing background 

of electrons, Eq.(9) gives  

  0
0
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or 0 0/ = ln(2 )q q  . Then, Eq.(8) takes the form  
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 This equation satisfies the infinite compression limit for  , i.e. at P   or 0V  , =   = (12 ). 

Other researchers [9-12] have favored for solids  =( 23 ) which follows from the degenerate 

electron gas model. Therefore, Eq.(9) with   = ( 23 ) should be considered as well. With ( 23 ) as the 

infinite compression limit in Eq.(8), we have  
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Here I propose a general form of Eq.(8) which incorporates both Eqs.(10) and (11)  
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 In this equation 0 ,  , and q  are treated as free parameters and will be determined by regression 

analysis of the experimental data sets. 
Rice has also derived an expression for   [13] based on its thermodynamic definition. He 

makes two assumptions: first, that the Grüneisen ratio = ( / )VV P E   is a function of volume only; 

and second, that the adiabatic bulk modulus = (( / )S SB V P V    is also a function of volume only. 

His expression has the form:  

(13)  1
0 0( / ) = ( 1/ ) .V V        

 After some rearrangements we obtain:  

(14)  1
0 0= (1 )(1 ) ,          

 where 0= 1 /V V   is the dimensionless volume. 

Equations (13) and (14) give incorrect value for  , i.e. '0  and fail to describe adequately 

any of the datasets used here. That is why they are excluded from further consideration. The results 
from the calculations and a comparison of the other expressions are presented in the next section. 

The values of  , obtained by regression analysis, are given careful consideration there as well.  

 
 

    
   

                 
  

                    Figure 1. Volume dependence of the Grüneisen ratio for Cu , Fe , MgO  and NaCl  
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2. Fitting the expressions for ( )V  to experimental data 
  
The experimental points for the regression analysis of the models (Eqs.(8, 10, 11, 12) are 

taken from [14-19]. In these papers diverse variables are used for the volume dependence of   --- 

0/  , 0= /V V , 0= 1 /V V  . In the present work the relative volume 0= 1 /V V   is 

introduced in all models. 
 

   Table 1. Experimental and calculated values of 0   
    

0  Cu  -Fe K NaCl MgO 

Experimental 
value 

2.0 1.71 1.27 1.62 1.539 

Jeanloz [7] 1.933 1.715 1.267 1.618 1.542 
Srivastava  and 
Sinha [8] 

1.908 1.761 1.268 1.637 1.478 

This work 1.918 1.767 1.278 1.644 1.487 
This work 1.933 1.745 1.267 1.620 1.542 

 
    
 

Table 2. Coefficient of multiple determination 
2R  and error in   [%] for  Cu,   -Fe, and  K   

 
Cu ε-Fe K 

Equations 2R  Error in γ [%] 2R  Error in γ [%] 2R  Error in γ [%] 

Jeanloz [8] 0.966 5.634 0.999 0.342 0.998 1.067 
Srivastava and 
Sinha [9] 

0.962 5.437 0.984 1.828 0.998 0.972 

This work 0.964 5.263 0979 2.126 0.988 2.259 
This work 0.966 5.634 0.994 1.162 0.998 1.067 

 
    

   
  

Figure 2. Volume dependence of the Grüneisen ratio for K  
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                Table 3. Coefficient of multiple determination 
2R  and error in   [%] for  NaCl and  MgO  

    
 

 
   The value of   at ambient conditions 0 ,   -- the value of   at P  , the second and 

the third Grüneisen ratios q  and q  are the parameters to be determined from the best fit of the 

experimental datasets. 
The calculated results are presented in Tabls.(1) - (3) and in Figs.(1) - (2) along with the 

experimental data points for comparison. 
From Tabls.(1) - (3) and Figs.(1) - (2) we can see that Eqs.((8) and (10) - (12) are in good 

agreement with the experimental datasets. In all cases Eqs. (8) and (12) have the highest and 

practically coinciding coefficients of multiple determination 2R  and the smallest error in  . The errors 

in   for the other expressions are within the range of the experimental errors and the coefficients of 

multiple determination 2R  are high enough for the models to be considered adequate. 

 
3.  The infinite compression limit of   
 

One of the considered models --- Eq. (12) contains   (the value of   at P ). It is 

assumed that at infinite pressure ( P  ) solids become a crystalline one-component plasma, i.e. an 
oscillating lattice of ions in a uniform neutralizing background of electrons [20, Ch.~17]. A number of 
theoretical works predict   = 1/2 for this limiting state of a solid. Kopyshev [21] calculated ( )V  in 

the Thomas-Fermi approximation and found   = 1/2 as P  . Various theoretical studies by other 

authors [22-24] as well as simple dimensional arguments by Hubbard [25, p.~34] also lead to   = 1/2 

as P  . Other researchers [12, and references cited therein] consider (2/3) a more appropriate 

value of   for solids due to the fact that the linear temperature dependence of the electronic specific 

heat of the degenerate free electron gas dominates over the phonon contribution when the Debye 
temperature is increased sufficiently. Al'tshuler  et al [14] assume 2/3 to be the infinite compression 

limit of   for all materials except alkali metals, for which  =1/2. 

Unfortunately, none of the expressions for ( )V , considered in the present work follow either 

of these constraints at infinite pressure. Values for  , obtained by regression analysis from Eq.(12) 

are far from (1/2) or (2/3). The values of  , calculated from Eq.(9) are also far from theoretical 

predictions. 
 
4.  Conclusions 
  

The most frequently used self-contained expressions for the volume dependence of the 
Grüneisen ratio have been considered in the present work and compared to available experimental 
data for Cu ,  - Fe , K , MgO , and NaCl . 

All expressions predict with very good accuracy values for   at ambient conditions and its 

volume variation in the low and intermediate pressure region, but fail to give correct values for its 
infinite compression limit. The model proposed by Jeanloz [7] and its modification in the present work 
are the best fits to the experimental data sets. In view of its possible application to deriving a complete 
EOS for solids from their response to shock-wave loading Eq.(12) is more convenient to use than 

Eq.(8) because it contains   instead of 0q , which is not frequently used in shock physics. 

None of the models, considered here, predict correct values for  . According to Young [20, 

Ch.17] matter approaches its infinite compression state when 0/  : 10, or, in terms of relative 

NaCl MgO 
Equations 2R   Error in   [%]  2R   Error in   [%]  

Jeanloz [7]  0.999 0.423 0.994 1.922 
Srivastava  and 
Sinha [8]  

0.996 1.378 0.861 7.562 

This work  0.992 1.916 0.879 7.059 
This work  0.999 0.438 0.994 1.922 
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volume  : 0.9. If we accept this criterion, we could say that the experimental data sets, used in this 
work are nearer to the origin of the pressure axis than to P  . In the case of  - Fe  [16] at 

= 359.5P GPa  (the highest pressure in the experiments considered here) 0/ = 1.684  . That is 

why the predictions for   from the regression analysis are not good. 

It is obvious that experiments at higher pressures are necessary to determine more reliably 
the infinite compression limit of  . Computer simulations easily surmount the limitations of laboratory 

experiments. They could be used to clarify the ability of the considered models to predict the infinite 
compression limit of  . 

These inferences trace out a possible line for continuation of the present research. A 
regression analysis of results from computer simulations, using the models, considered here, might 

elucidate their ability to predict  . 
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